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1
METHOD AND SYSTEM FOR
THROUGH-THE-WALL IMAGING USING
COMPRESSIVE SENSING AND MIMO
ANTENNA ARRAYS

FIELD OF THE INVENTION

This invention relates generally to through-the-wall imag-
ing, and more particularly to using compressive sensing and
MIMO antenna arrays to reconstruct a scene behind a wall.

BACKGROUND OF THE INVENTION

Through-the-Wall Imaging

Through-the-wall-imaging (TWI) can be used to detect
objects inside an enclosed structure from the outside. In TWI,
a transmitter emits an electromagnetic (EM) radar pulse,
which propagates through a wall. The pulse is reflected by the
objects on the other side of the wall, and then propagates back
to areceiver as an impulse response convolved with the emit-
ted pulse. Typically, the transmitter and receiver use an
antenna array.

Depending on a dielectric permittivity and permeability of
the wall, the received signal is often corrupted with indirect
secondary reflections from the all, which result in ghost arti-
facts in an image that appear as noise. Wall clutter reduction
techniques attempt to eliminate the artifacts that arise from
the multi-path reflections TWI.

Compressive Sensing

Compressive sensing (CS) and other sub-Nyquist sam-
pling and acquisition methods can be used by sparse, under-
sampled radar array systems. The antenna array enables radar
signal acquisition and imaging using significantly fewer array
elements compared to conventional array structures, thus sig-
nificantly reducing the array implementation cost.

Sparse arrays have an average inter-element spacing much
larger than half the wavelength of the transmitted signal,
which is the Nyquist interval for may processing. This is
achieved using non-uniform element spacing, which elimi-
nates fundamentally unresolvable ambiguities known as grat-
ing lobes.

While conventional methods have been used to recover the
acquired image, those methods suffer from the increased
sidelobes exhibited by those arrays. However, sparse recov-
ery methods are robust to sidelobes, thus enabling imaging
using significantly fewer array elements. As used herein,
“sparsity” is not a relative term, but rather a term of art used
to refer to data with mostly zero values, and only a few
non-zero values.

InU.S. application Ser. No. 13/947,426, “Method and Sys-
tem for Through-the-Wall imaging using Sparse inversion for
Blind Multi-Path Elimination,” filed by Mansour, on Jul. 22,
2013, targets are detected in a scene behind a wall by trans-
mitting a pulse through the wall. A primary impulse response
is detected by a sparse regularized least squares inversion
applied to received signals corresponding to the reflected
pulse. A delay operator that matches the primary impulse
response to similar impulse responses in the received, signals
is also determined. A distortion of the pulse after the pulse
passes through the wall hut before the pulse is reflected by the
target can also be determined. The distortion is used in an
iterative process to refine the detection of the target and to
suppress ghosting artifacts.

SUMMARY OF THE INVENTION

Compressive sensing (CS) and sparse array processing
provide new approaches to improve radar imaging systems.

10

15

20

25

30

35

40

45

50

55

60

65

2

The embodiments of the invention uses a Multiple-Input-
Multiple-Output (MIMO) radar arrays to significantly reduce
the cost and complexity of through-the-wall imaging (TWI).

The embodiments consider nested arrays, co-prime arrays,
and random arrays, in the presence of layered lossless walls.
Scene reconstruction is performed by formulating and solv-
ing a wall parameter estimation problem in conjunction with
a sparse reconstruction problem that takes the wall param-
eters into account.

The MIMO architectures exhibit reduced array gain due to
waveform diversity, and provide liner spatial resolution, more
degrees of freedom, improved performance in parameter
identifiability, as well as multipath rejection.

Under an assumption that an imaged scene is sparse, the
description of the method analyzes imaging performance of
different sparse array architectures and wall profiles in terms
of mainlobe and sidelobe structure by examining character-
istics of a point spread function (PSF). The PSF, also known
as a beampattern, is intimately related to a mutual coherence
in the context of the sparse recovery and compressed sensing.
The characteristics of the PSF provide very good intuition on
the performance of the array both for sparse reconstruction
methods.

Because the increased sidelobe levels of the architectures
decrease the performance of conventional imaging methods,
a sparse reconstruction is used to exploit the sparsity of the
scene of interest. In one embodiment, we apply iterative hard
thresholding (IHT). IHT is a greedy-based sparse signal
recovery method to estimate the reflectivity map behind the
wall.

Furthermore, the embodiments provide an method to esti-
mate the parameters of the all profile from the received data.
The profile includes the dielectric permittivity and permeabil-
ity, and thickness of the wall. These parameters are used to
develop imaging operators for our reconstruction method.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B are schematics of a system and method
for reconstructing a scene behind a wall according to embodi-
ments of the invention;

FIG. 1C is a schematic of indirect secondary reflections
due to the wall considered by embodiments of the invention;

FIG. 2 is a block diagram of the system and method for
reconstructing a scene behind a wall according to embodi-
ments of the invention;

FIG. 3A is a schematic of co-prime arrays are defined by a
pair of co-prime numbers according to embodiments of the
invention;

FIG. 3B is a schematic of the MIMO array beam pattern for
the co-prime array of FIG. 3A according to embodiments of
the invention;

FIG. 4A is a schematic of a nested arrays also includes two
uniform linear arrays according to embodiments of the inven-
tion; and

FIG. 4B is a schematic of the MIMO array beam pattern for
the nest array of FIG. 4A according to embodiments of the
invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

System Setup
As shown in FIGS. 1A and 1B embodiments of our inven-
tion provide a method and system for through-the-wall imag-
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ing (TWI) of objects 50 that do not require any prior knowl-
edge of scene geometry. The method can reconstruct a scene
60 behind a wall 40.

The system includes a Multiple-Input-Multiple-Output
(MIMO) antenna array 10, transceiver 20, and processor 30.
The antenna comprises of multiple elements 11. In the prior,
art the spacing of the elements is typically uniform and equal
to half the wavelength of the transmitted signal. In some
embodiments of this invention, an average inter-element
spacing of the antenna elements is nonuniform and ranch
larger than half the wavelength of the transmitted signal.

The transceiver transmits one or more pulses 14 using
some or all of the antenna elements 11 of the antenna array.
The transmitted pulse propagates through the wall 40 and are
reflected by the possible objects 50 in a scene 60 behind the
wall 40. Reflected signals (impulse responses) 12, corre-
sponding to each pulse, are received by elements of the array
10 as described below. The received signals include primary
reflections received via direct paths, and indirect secondary
reflections received by multi-paths. It is noted, that in some
embodiments, an antenna element can be used to only trans-
mit or only receive pulses or both transmit and receive pulses.

The received signals 12 are processed by a method 200 to
produce an image 70 that reconstructs the scene 60 including
the objects 50. The method can be performed in the processor
30 connected with buses to a memory and input/output inter-
faces as known in the art.

As shown in FIG. 1C, of particular concern are indirect
secondary reflections 80 due to the wall, which can confuse
the reconstruction. Therefore, we first estimate parameters of
the wall, and use the parameters to build a model of how the
scene is reflected through the wall. Then, we use the model to
do a sparse recovery of the scene.

Scene Reconstruction

As shown in FIG. 2, the scene 60 behind the wall 40 is
reconstructed as an image 70 by transmitting the signal 14
through the wall into the scene, and estimating 210 param-
eters of a dielectric permittivity and permeability of the wall
from the reflected signal 12. A model 200 of the wall is
generated 220 using the parameters. Then, the scene is recon-
structed from the reflected signal using the model, sparse
recovery and compressed sensing 230.

TWI Signal Model

We assume a 2D imaging scenario, where the MIMO radar
array 10 is located at an origin 13 with a d,, standoff distance
from the wall 40. The positions of the M, transmitter (Tx) and
M, receiver (Rx) elements are t, i=1, . . . , M, and r,,
i-1,. .., M,, respectively.

Using a point target approximation, a received scattered
field, excluding effects of direct wall reflections and additive
observation noise, can be written in a frequency domain as

»(t.r,0)=lss(p)w(0)grp,0)g(t.p,0)dp. 1

In equation (1), w(w) represents a frequency signature of
the transmitted radar waveform, s(p) denotes a reflectivity of
a the object of interest located at p=(s,y) and S denotes the
imaged region 60. The function g(p,,p,.m) denotes Green’s
function for a layered medium from point p, to p,, whichis a
function of the thickness d, and relative permittivity, € of the
wall. The Greens function is the impulse response of an
inhomogeneous differential equation defined on a domain,
with specified initial conditions or boundary conditions.

To discretize the system, we partition the region S using a
grid of P points, and represent the complex reflectivity of the

map using SE CExD PN frequency samples are obtained at
each Rx element, then the discretized version of equation (1)
is:

15

25

40

45

60

y=®s, 2)
where

y =D, r, wn), Y, o, w2), . Yy . on)] 3
O =[4y, ¢2, ... ,pp] € CMrMN<P) apg @)

Wew1)g(r1, pi, w1)gty, pi, 1) ®)

w(w2)g(r1, pi, w2)g(t1, pi, w2)

;=

wW(wn)g(rm,» pis ©N)&(IM, » Pis WN)

withy, oS¢ MM X3 The matrix & is also referred to as
the array manifold matrix.

Sparse Array Design

Sparse Array Architectures

The Sparse array design in the embodiments starts with a
notional grid of M, and M, uniformly spaced possible Tx and
Rx array elements, respectively. This grid is subsampled
according to each architecture, co-prime, nested or random,
and only a few grid points are selected to include actual Tx or
Rx antenna elements.

As shown in FIG. 38, co-prime arrays are defined by a pair
of co-prime numbers M, and M,, for Tx and Rx arrays,
respectively. The Tx array includes M, elements with an inter
element spacing of M, grid units, while the Rx array includes
M, elements with an inter-element spacing of M, grid units.

As shown in FIG. 4A the nested arrays also includes two
uniform linear arrays (ULA), where the Tx array includes M,
elements with spacing of one grid unit, and the Rx array
includes M, elements with spacing M, of units.

Random arrays with the same aperture are designed by
random selecting M, Tx and M, Rx elements from each grid
using a uniform distribution.

The optimal MIMO sparse nested array can be obtained by
maximizing the degrees of freedom M, M,, given the total
lumber of MIMO elements M +M,. For the co-prime array, an
additive prime is also included.

FIGS. 3B and 4B respectively show examples of MIMO
array beam pattern for co-prime array and nested array with
M, =4 and M,=5. FIGS. 3B and 4B show the beam patterns for
the transmitted signal 301, the received signal 302, and the
solid line 303 the total product beam patterns.

The M, xM, sparse MIMO array can be considered a sub-
sampling of a M,xM, full MIMO array. This can be repre-
sented using a subsampling matrix DE{0,1 }MMNMAMN
Using ® and ® to denote the manifold matrices of the full and
sparse arrays, respectively, the acquisition function (2) for the
sparse array becomes

F=DDs=ds, (6)

where ¥ denotes the subsampled received data.

Array Design Properties

When considering the properties of an array design, con-
ventional array techniques focus on the point spread function
(PSF), or beam pattern, of the array. The PSF, appropriately
normalized, is equivalent to the mutual coherence between
columns of the manifold matrix, a key property of interest in
compressive sensing (CS) acquisition systems. The coher-
ence between two columns is defined as the normalized inner
product between the columns. The coherence of the matrix is
defined as the maximum absolute value of the inner product
among all pairs of elements in the matrix.
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A low matrix coherence is sufficient uw(®) but not neces-
sary, to provide worst-case sparse reconstruction guarantees.

Onthe other hand, the coherence structure described by the
PSF, ®”®,, provides significantly more information about
the performance of the array, especially under conventional
methods, such as the resolution, the noise and interference
robustness, and the points in the imaged regions can poten-
tially cause reconstruction ambiguities.

The figures of merit we consider is the mainlobe area
(MLA) and the maximum sidelobe level (MSL)). The MLA is
defined as an area around a point in the scene for which the
PSF is above a certain level, typically -3 dB. The MSL is
defined as the highest level the PSF reaches in its sidelobes
i.e., outside of the main lobe. The MLA is a measure of the
resolution of the array, because the MLLA represents the ambi-
guity around a point in the scene. The MSL is a measure of the
recoverability of a particular scene point, because it measures
the maximum mutual coherence of that point with the other
points in the scene.

Scene Reconstruction

Wall Profile Estimation

To determine the Green’s function g(p,,p,,®) in equation
(1), we need to determine the permittivity €, and the thickness
d, =1, ..., L, for all L layers in the wall. Because the
geometry and reflective characteristics of the wall are not
known in advance, the permittivity and thickness is estimated
from the data acquired from the received signal 12.

Excluding self-coupling between Tx and Rx array ele-
ments, the received signal from all Rx elements includes
multipath 60 components from each wall layer. We assume
the bistatic Tx and Rx element are separated by A=|jr—t|| but
share the same standoff distance d, from the wall. Using
Snell’s law, the reflection from the 1?” layer arrives with delay
T,(A), i.e., time of arrival (TOA), is

2 d (8)
TA)==) &n
¢ =
with
! )
A
[2_np _2
; ri—df = 7 and
r2,1 —d-z,l P —d? (10)
&= — =g, i=2, ..,
rit1 i

where the r, is the one-way traveling distance within each
layer.

Thus, the unknown wall parameters, collectively denoted
using 6={€, ..., &, d, ..., d;}, can be obtained by
minimizing a mean squared error between the measured TOA
of each reflection, T,(A), I=1, . . . L and the predicted TOA
T/A.9), given the wall parameters from each layer:

L B, (1D
O=argminy. > ajln(d) - A 0F,

(==
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6

where c is the weight assigned to each Tx-Rx separation and
M, M, 1s the total number of Tx-Rx separations from the
MIMO radar array. For limited RF bandwidth or low SNR
applications, super-resolution or adaptive techniques can be
applied to obtain more accurate TOA estimates.

Sparse image Recovery

To recover the scene reflectivity § from the measurements
¥ in equation (6), we assume that the scene is sparse and use
CS techniques.

Specifically, one embodiment may solve the sparsity con-
strained minimization problem

A T z 2
§ = argmin|ly - sl st lsllo < K. 12

where K is the maximum sparsity of s, i.e., the maximum
number of reflectors in the discretized scene. While in general
the problem is NP-hard, it can be solved by relaxing the 1,
norm to its 1, convex hull or using a greedy methods. One
embodiment can use iterative hard-thresholding (IHT), which
is an iterative method in which the sparse estimate §,“*" at
iteration t is estimated using

$o D=1, (8T (F-D5D), 13)

where ) is a step size, and T, (*) is a hard thresholding operator
that preserves only the K largest magnitude components of'its
argument and sets the remaining components to 0. The IHT is
the preferred embodiment because it provides a great balance
of computational cost and recovery performance compared to
alternatives. It also allows for greater adaptability to signal
models using model-based CS. The IHT can be further accel-
erated by adapting the step-size selection in each iteration.
Other embodiments may use other methods to solve equation
(12), such as the matching pursuit (MP), the orthogonal
matching pursuit (OMP), the subspace pursuit (SP), the Com-
pressive Sampling Matching Pursuit (CoSaMP) and approxi-
mate message passing (AMP), see e.g., U.S. Pat. No. 7,834,
795.

Another embodiment may use a convex optimization
approach, which attempts to approximate:

S= argmxinllsllo st ||y —@5”2 = 0. (14)

As with the embodiments above, the problem is NP-hard,
and it can be solved by relaxing the 1, norm to its 1, convex
hull. The methods that approximate or solve (14) may use one
of the following formulations, among others:

§ = argminlisll; st Iy - dsll, <€, 15

and

IS . ~ & 2
$ = argminlsll, + Ay - Bsl;- 4o

These formulations may be solved using a number of meth-
ods, such as the iterative soft thresholding algorithm (ISTA),
fixed point continuation (FPC), gradient projection for sparse
reconstruction (GPSR), smoothing proximal gradient (SPG),
among others, see U.S. Pat. No. 7,834,795.

Evaluation of Array Designs

From our experimental evaluation of our antenna designs,
we draw the following conclusions. Co-prime arrays have a
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better cross-range resolution (as measured by the ML A) than
nested arrays because co-prime arrays provide larger MIMO
virtual aperture length. On the other hand, nested arrays,
exhibit lower MSL. Random arrays in general produce higher
MSLs compared to co-prime and nested arrays. The effect of
array geometry on MSL is significantly diminished for walls
with higher relative permittivity; overall, MSL increases as
relative permittivity increases. For smaller wall permittivity,
multiple reflections can cause ambiguities in the range profile
resulting in enlarged ML As. For larger wall permittivity, mul-
tiple reflections produce better range resolvability with lower
MLA but larger MSL. v) Points of interest near the endfire
array surfer more serious influence from wall multiples,
because the Fresnel reflection coefficient of the air-wall inter-
face increases.

Although the invention has been described by way of
examples of preferred embodiments, it is to be understood
that various other adaptations and modifications can be made
within the spirit and scope of the invention. Therefore, it is the
object of the appended claims to cover all such variations and
modifications as come within the true spirit and scope of the
invention.

We claim:

1. A system for reconstructing a scene behind a wall, com-
prising:

an antenna array configured for transmitting a signal
through the wall into the scene;

a processor configured for estimating parameters of the
wall from a reflected signal, and generating a model of
the permittivity of the wall using the parameters, and
reconstructing the scene as an image from the reflected
signal using the model, sparse recovery and compressed
sensing.
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2. The system of claim 1, further comprising:

a Multiple-Input-Multiple-Output (MIMO) antenna array

to transmit and receive the signals.

3. The system of claim 2, wherein an average inter-element
spacing of antenna elements of the array is nonuniform and
much larger than half'a wavelength of the transmitted signal.

4. The system of claim 2, wherein the array is a co-prime
array.

5. The system of claim 2, wherein the array is a nested
array.

6. The system of claim 2, wherein the array is a random
array.

7. The system of claim 1, wherein the parameters include a
permittivity and a thickness for all layers in the wall.

8. The system of claim 1, wherein the parameters are
obtained by minimizing a mean squared error between a
measured time of arrival (TOA) and a predicted TOA of the
received signal.

9. The system of claim 1, wherein the sparse recovery uses
a greedy sparse recovery method.

10. The system of claim 9, wherein the greedy sparse
recovery method uses an iterative hard-thresholding algo-
rithm (IHT).

11. The system of claim 9, wherein the greedy sparse
recovery method is accelerated by adapting a step-size selec-
tion in each iteration.

12.The system of claim 1, wherein the sparse recovery uses
a convex sparse approximation method.

13. The system of claim 12, wherein the convex sparse
approximation method is accelerated by adapting a step-size
selection in each iteration.
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